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1. INTRODUCTION

In this note (Section 2) we develop a method for the location of the set of
zeros of a sequence of orthogonal polynomials with respect to an inner
product of the form

Op, qP=F (T0(p), ..., TN(p)) W(z)(T0(q), ..., TN(q))g dm(z),(1.1)

where:

(i) T0, ..., TN are linear operators on the space P of algebraic poly-
nomials with complex coefficients, and



(ii) W(z) is a positive definite matrix of integrable functions with
respect to the positive measure m supported on a subset of the complex
plane.

The method is applied to locate zeros of Sobolev orthogonal polynomials
and polynomials satisfying higher-order recurrence relations (assuming that
the matrix of functions W is diagonal). In both cases the bounds for the
zeros are sharp.

In Section 3, we consider orthogonal polynomials with respect to a
Sobolev inner product of the form

Op, qP=C
N

k=0
F p (k)(z) q (k)(z) wk(z) dm(z), N \ 1,(1.2)

where m is a finite positive Borel measure with support D … C (D containing
infinitely many points) and wk ¥ L1(m), wk \ 0, k=0, ..., N.

These nonstandard inner products have attracted much attention in the
last few years. Regarding the zero location, some results have been
obtained for the case when m has real support and wk(z) dm(z) reduces to a
Dirac’s delta, k=1, ..., n, (discrete Sobolev inner product); see for instance
([AMRR1], [AMRR2]). For a continuous Sobolev inner product,
W. Gautschi and A. B. J. Kuijlaars in [GK] have found zero asymptotic
properties for N=1 under the hypothesis that w0 dm and w1 dm are regular
measures (in the sense of [ST]). More recently, G. Lopez and H. Pijeira in
[LP] have obtained some estimates on the zeros of Sobolev orthogonal
polynomials with respect to an inner product of the form given in (1.2)
assuming that m is supported on a compact set of the real line and that
wk/wk−1 ¥ L.(m), k=1, ..., N. They used the boundedness of the multipli-
cation operator defined in a certain Banach space associated with the
Sobolev inner product. G. Lopez has pointed out to the authors a new and
very short proof for the boundedness of the zeros assuming the bounded-
ness of the multiplication operator which, for the sake of completeness, we
include here (see also [LPP]): let (pn)n be a sequence of orthogonal poly-
nomials with respect to an inner product O · , ·P for which the multiplication
operator is bounded, that is, there exists c > 0 such that Ozq(z), zq(z)P [

cOq(z), q(z)P for any polynomial q; then |a| [`c for any zero a of pn,
n ¥N. Indeed, we can write pn(z)=(z−a) q(z) for some polynomial q of
degree n−1; then Opn(z), q(z)P=0 and since zq(z)=pn(z)+aq(z) we get
that

Ozq(z), zq(z)P=Opn(z), pn(z)P+Oaq(z), aq(z)P \ |a|2 Oq(z), q(z)P.
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Using the boundedness of the multiplication operator we have that

|a|2 Oq(z), q(z)P [ Ozq(z), zq(z)P [ cOq(z), q(z)P,

and since Oq(z), q(z)P ] 0, we finally deduce that |a| [`c.
Let us remark that, for Sobolev inner product, the boundness of the

multiplication operator forces the measures which define the inner product
to have compact support.

Using our method, we can extend the latter results (improving also their
bounds) for measures m with support in any set of the complex plane
(compact or not):

Theorem 1.1. Consider a Sobolev inner product of the form given in
(1.2), where m is a finite Borel measure with support D in the complex plane
C (D containing infinitely many points) and wk ¥ L1(m), wk \ 0, k=0, ..., N.
Assume wk/wk−1 ¥ L.(m), k=1, ..., N, and write Ck=||wk/wk−1 ||., k=
1, ..., N. If z0 is a zero of an orthogonal polynomial with respect to O ,P, then

d(z0, Co(D)) [ (1/2)=C
N

k=1
k2Ck,(1.3)

where Co(D) is the convex hull of the support of m.

An example is presented in Section 3 showing that the estimate (1.3) is
sharp.

We complete Section 3 obtaining other different bounds (see Theorem
3.2) and extending them for general Sobolev inner products of size 2×2
(see Theorem 3.3).

In Section 4 we consider sequences of polynomials (pn)n satisfying a
(2N+3)-term recurrence relation of the form

tN+1pn(t)=cn, 0 pn(t)+ C
N+1

k=1
[cn, k pn−k(t)+cn+k, k pn+k(t)],(1.4)

with initial conditions pk=0, for k < 0, and pk(t) a polynomial of degree k,
for k=0, ..., N+1. One of the authors proved in [D2] that the sequence
(pn)n is then orthonormal with respect to an inner product of the form
(1.1), where

Tm(p)=C
n

p (n(N+1)+m)(0)
(n(N+1)+m)!

tn,(1.5)
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and m a positive measure supported on the real line. Discrete Sobolev
orthonormal polynomials are a particular case of polynomials satisfying a
higher order recurrence relation (see [DV], Sect. 3).

Polynomials satisfying higher-order recurrence relations such as (1.4) are
closely related to orthogonal matrix polynomials (see [D1], [D2], [DV]).

We next assume that the matrix of functions W is diagonal and m has
compact support. Using our method we get the following bound:

Theorem 1.2. Consider an inner product of the form

Op, qP=C
N

k=0
F Tk(p(z)) Tk(q(z)) wk(z) dm(z),(1.6)

where the operators Tm, m=0, ..., N, are given by (1.5), m is a finite positive
Borel measure with compact support D … C (D containing infinitely many
points) and wk ¥ L1(m), wk \ 0. Assume that wk/wk−1 ¥ L.(m), k=1, ..., N,
and |z|2 w0(z)/wN(z) ¥ L.(m). If z0 is a zero of an orthogonal polynomial
with respect to O ,P, then

|z0 | [ max{`C0,`C1, ...,`CN},(1.7)

where Ck=||wk/wk−1 ||., k=1, ..., N, and C0=|||z|2 w0(z)/wN(z)||..

We provide an example that shows (1.7) is sharp.
Finally, we extend Theorem 1.2 for the nondiagonal case of size 2×2

(see Theorem 4.1).

2. DESCRIPTION OF THE METHOD

We consider inner products O ,P, defined on the linear space of polyno-
mials with complex coefficients, of the form given by (1.1).

We will assume that for each z in the support of m and fixed w ¥ C there
exists a (N+1)×(N+1) matrix C(z, w) such that for all p ¥ P

(T0((z−w) p(z)), ..., TN((z−w) p(z)))(2.1)

=(T0(p(z)), ..., TN(p(z))) C(z, w).

Let us remark that for an inner product these matrices C do not exist in
general (e.g. consider T0(p)=>10 p(t) dt and T1(p)=pŒ(0); then for p(t)=
1−3t2 one has T0(p)=T1(p)=0, but T0((z−w) p)=−1/4, T1((z−w) p)=1).
However for the most interesting cases of inner products of the form (1.2)
and (1.6) such matrices C always exist (see (3.1) for inner products of the
form (1.2) and (4.1) for those of the form (1.6)).
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Let z0 be a zero of an orthogonal polynomial p for the inner product
O ,P. Write p(z)=(z−z0) q(z). Then from the orthogonality of p and (2.1)
we get for any a ¥ C that

0=aO(z−z0) q(z), q(z)P+āOq(z), (z−z0) q(z)P

=a F [(T0((z−z0) q(z)), ..., TN((z−z0) q(z))) W(z)(T0(q(z)), ..., TN(q(z)))g

+ā(T0(q(z)), ..., TN(q(z))) W(z)(T0((z−z0) q(z)), ..., TN((z−z0) q(z)))g] dm

=F (T0(q(z)), ..., TN(q(z)))(aC(z, z0) W(z)+āW(z)C(z, z0)g)

(T0(q(z)), ..., TN(q(z)))g dm.

We can then conclude that for some z in the support of m the hermitian
matrix

(aC(z, z0) W(z)+āW(z) C(z, z0)g)(2.2)

cannot be positive definite or negative definite. From this fact one can
obtain some bounds on z0 under additional hypotheses on the inner
product.

In the next sections we illustrate the method with some examples.

3. SOBOLEV INNER PRODUCTS

In this section we prove the estimate (1.3) stated in Theorem 1.1 (we thus
assume that the matrix of functions W is diagonal).

Indeed, for a Sobolev inner product we have that Tm=D(m) and then

((z−w) p(z))(m)=(z−w) p (m)(z)+mp(m−1)(z),

from which we deduce:

C(z, w)=R
z−w 1 0 ... 0 0

0 z−w 2 ... 0 0

0 0 z−w ... 0 0

x x x z z x

0 0 0 ... z−w N

0 0 0 ... 0 z−w

S .(3.1)
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Let z0 be a zero of an orthogonal polynomial with respect to the Sobolev
inner product given by (1.2). If z0 ¨ Co(D) there exists z1 ¥ Co(D) such that
d(z0, Co(D))=d(z0, z1) > 0.

We first assume that Iz0=Iz1 and that Rz1 \Rz0. This implies that
Rz−Rz0 >Rz1−Rz0 > 0 for z ¥ Co(D) and that

d(z0, Co(D))=inf{Rz−Rz0 : z ¥ Co(D)}.(3.2)

Taking a=1 in (2.2) and according to our method we have that the
hermitian matrix

C(z, z0) W(z)+W(z) C(z, z0)g

cannot be positive definite for some z ¥ D.
Formula (3.1) now gives that:

C(z, z0) W(z)+W(z) C(z, z0)g

(3.3)

=R
2R(z−z0) w0(z) w1(z) 0 0 ... 0

w1(z) 2R(z−z0) w1(z) 2w2(z) ... ... 0

0 2w2(z) 2R(z−z0) w2(z) 3w3(z) ... 0

x x z z z x

0 0 ... 0 NwN(z) 2R(z−z0) wN(z)

S .
To prove (1.3) we need the following bound on the principal determinant

of this matrix.

Lemma 3.1. Write Mn=Mn(z, z0) for the nth principal determinant of
the matrix C(z, z0) W(z)+W(z) C(z, z0)g. If Mn > 0 for 1 [ n [ m, where
0 [ m [N, then

Mm+1 \ (2(Rz−Rz0))m−1

×14(Rz−Rz0)2 D
m

k=0
wk(z)− C

m

k=1
k2w2k(z) D

m

i=0; i ] k, k−1
wi(z)2 .

Proof. Let a=Rz−Rz0. Expanding Mn+1 by the last row we get the
following recurrence formula:

Mn+1=2awnMn−n2w2nMn−1.(3.4)

Since Mn > 0 for 1 [ n [ m, it follows that

Mn+1 [ 2awnMn.(3.5)
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This gives for n=m:

Mm+1=2awmMm−m2w2mMm−1

\ 2awmMm−2am2w2mwm−2Mm−2.

Using the recurrence relation (3.4) for n=m−1 we get:

Mm+1 \ (2a)2 wmwm−1Mm−1

−(2a)(m2w2mwm−2+(m−1)2 wmw
2
m−1) Mm−2.

Again from (3.5) for n=m−3 we get

Mm+1 \ (2a)2 wmwm−1Mm−1

−(2a)2 (m2w2mwm−2wm−3+(m−1)2 wmw
2
m−1wm−3) Mm−3.

Applying successively (3.4) and (3.5) we find that

Mm+1 \ (2a)m−2 wm · · ·w3M3−(2a)m−2 1 C
m

k=3
k2w2k D

m

i=1; i ] k, k−1
wi 2M1.

Lemma 3.1 follows now by taking into account that

M3=(2a)3 w2w1w0−(2a)(22w22w0+w21w2),

and M1=2aw0. L

Since the hermitian matrix C(z, z0) W(z)+W(z) C(z, z0)g cannot be
positive definite, we have that for some m+1, 1 [ m [N, and for some z
in D, Mm+1(z, z0) [ 0. We take the smallest m with this property.

From Lemma 3.1 and taking into account that Rz−Rz0 > 0 for z ¥ D,
we deduce that

4(Rz−Rz0)2 D
m

k=0
wk(z)− C

m

k=1
k2w2k(z) D

m

i=0; i ] k, k−1
wi(z) [ 0.

This inequality finally gives for some z ¥ D and some m, 1 [ m [N, that

Rz−Rz0 [
1
2
=C

m

k=1
k2

wk(z)
wk−1(z)

.

To get (1.3), it is enough to take into account (3.2) and that the right-hand
side in the previous inequality is an increasing function of m.
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If Iz0 ] Iz1, or Rz1 <Rz0, we proceed as follows. We write r for the line
joining z0 and z1 and s for the line perpendicular to r at z1. We now make a
rotation y such that y(r) and y(s) are parallel to the real and imaginary axis
respectively and R(y(z1)) >R(y(z0)), that is, we take h ¥ [0, 2p) such that
I(e ihz)=constant for z ¥ r, R(e ihz)=constant for z ¥ s and R(e ihz1) >
R(e ihz0). Then we have that

R(e ih(z−z0)) \R(e ih(z1−z0)) > 0

for z ¥ Co(D) and

d(z0, Co(D))=inf{R(e ih(z−z0)): z ¥ Co(D)}.

We now take a=e ih in (2.2) and proceed as before. L

We now give an example proving that (1.3) is sharp. Indeed, let us
consider the Sobolev inner product

Op, qP=F
a

0
p(t) q(t) dt+Mp(1) q(1)+NpŒ(1) qŒ(1),

where 0 < a < 1, M, N > 0 (see [AMRR1] for an study of this type of
inner product). With the notation of Theorem 1.1 we have N=1, m=
q[0, a] dt+d1, D=[0, a] 2 {1}, Co(D)=[0, 1], w0(t)=q[0, a](t)+Mq{1}(t),
w1(t)=Nq{1}(t). Hence, Theorem 1.1 gives the bound d(z0, Co(D)) [

(1/2)`N/M.
We now compute an orthogonal polynomial of degree two with respect

to O ,P. To do that we need the following data:

O1, 1P=a+M, Ot, 1P=a2/2+M, Ot2, 1P=a3/3+M

Ot, tP=a3/3+M+N, Ot2, tP=a4/4+M+2N.

We then have that

p2(t)= :
a+M a2/2+M a3/3+M

a2/2+M a3/3+M+N a4/4+M+2N

1 t t2

:
is the orthogonal polynomial of degree two with respect to O ,P (up to a
nonzero multiplicative constant). Hence, the polynomial

q2(t)= :
1+M/a a/2+M/a a2/3+M/a

a/2+M/a a2/3+M/a+N/a a3/4+M/a+2N/a

1 t t2

:
is also orthogonal with respect to O ,P.
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We take M=N=ea, e > 0. The bound given by Theorem 1.1 is now

d(z0, Co(D)) [ 1/2.(3.6)

Taking the limit as a tends to 0, we get that the largest zero of q2 tends to
the largest zero of the polynomial

: 1+e e e

e 2e 3e

1 t t2

: ,
or what is equivalent, to the largest zero of the polynomial

: 1+e e e

1 2 3

1 t t2

: .
Taking again the limit as e tends to 0, we get that the largest zero of q2
tends to the largest zero of the polynomial

: 1 0 0

1 2 3

1 t t2

:=t(2t−3),

that is, the largest zero of q2 tends to 3/2, and since Co(D)=[0, 1], we
deduce that (3.6) is sharp.

We can proceed in a slightly different way than in the proof of Theorem
1.1 to obtain another bound on the zeros:

Theorem 3.2. Let 0 < ai, bi < 2 satisfy ai+bi=2, i=1, ..., N−1, and
a0=2, bN=2. Then, with the hypotheses of Theorem 1.1 we also have

d(z0, Co(D)) [ max 3 k`Ck
`ak−1bk

, k=1, ..., N4 .(3.7)

Proof. We again assume (3.2) and that Rz−Rz0 >Rz1−Rz0 > 0 for
z ¥ Co(D).

To prove the estimate (3.7) we split up the matrix C(z, z0) W(z)+
W(z) C(z, z0)g (see (3.3)) as follows:

C(z, z0) W(z)+W(z) C(z, z0)g=X1+X2+·· ·+XN,
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where

X1=R
2R(z−z0) w0 w1 0 ... 0

w1 b1R(z−z0) w1 0 ... 0

0 0 0 ... 0

x x x z x

0 0 0 ... 0

S ,

X2=R
0 0 0 0 ... 0

0 a1R(z−z0) w1 2w2 0 ... 0

0 2w2 b2R(z−z0) w2 0 ... 0

0 0 0 0 ... 0

x x x z z x

0 0 0 0 ... 0

S ,
x

XN=R
0 ... 0 0 0

0 ... 0 0 0

x x z z x

0 ... 0 0 0

0 ... 0 aN−1R(z−z0) wN−1 NwN

0 ... 0 NwN 2R(z−z0) wN

S .
Since for some z ¥ D the hermitian matrix C(z, z0) W(z)+W(z) C(z, z0)g

can not be positive definite, at least one of the matrices Xm, m=1, ..., N,
should not be positive semidefinite for some z ¥ D. Now (3.7) can be easily
deduced taking into account that Rz−Rz0 > 0 in D. L

Our method can also be applied to locate the zeros of orthogonal
polynomials with respect to general Sobolev inner product of size 2×2.

Theorem 3.3. Consider a Sobolev inner product of the form

Op, qP=C
1

k=0
F p (k)(z) q (k)(z) wk(z) dm(z)

+F (pŒ(t) q(t)+p(t) qŒ(t)) v(z) dm(z),
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where m is a finite positive Borel measure with support D … C (D containing
infinitely many points), w0, w1, v ¥ L1(m), w0, w1 \ 0 and w0w1−v2 \ 0. Also
assume that w21/(w0w1−v2) ¥ L.(m). If z0 is a zero of an orthogonal
polynomial with respect to O ,P, then

d(z0, Co(D)) [
1
2
> w21
w0w1−v2
>1/2
.

.(3.8)

Proof. Indeed, proceeding as before, we find that

C(z, z0) W(z)+W(z) C(z, z0)g

=R2R(z−z0) w0+2v 2R(z−z0) v+w1
2R(z−z0) v+w1 2R(z−z0) w1

S .

(3.8) can be deduced taking into account that that matrix can not be
positive definite for some z ¥ D. L

4. POLYNOMIALS SATISFYING HIGHER-ORDER
RECURRENCE RELATIONS

In this section we prove Theorem 1.2.
Indeed, taking into account the definition of the operators Tm (see (1.5))

we get for m=1, ..., N, that

Tm((z−w) p(z))=−wTm(p(z))+Tm−1(p(z)),

and for m=0 that

T0((z−w) p(z))=−wT0(p(z))+zTN(p(z)).

From this we find:

C(z, w)=R
−w 1 0 ... 0 0

0 −w 1 ... 0 0

0 0 −w ... 0 0

x x x z z x

0 0 0 ... −w 1

z 0 0 ... 0 −w

S .

ZEROS OF NONSTANDARD ORTHOGONAL POLYNOMIALS 137



Proceeding as in the previous section we obtain:

C(z, z0) W(z)+W(z) C(z, z0)g

=R
−2R(z0) w0 w1 0 ... 0 z̄w0

w1 −2R(z0) w1 w2 ... 0 0

0 w2 −2R(z0) w2 ... 0 0

x x z z x x

zw0 0 0 ... wN −2R(z0) wN

S .
We now split up the hermitian matrix C(z, z0) W(z)+W(z) C(z, z0)g as
follows:

C(z, z0) W(z)+W(z) C(z, z0)g=X+X1+X2+·· ·+XN,

where

X=R
−R(z0) w0 0 ... 0 z̄w0

0 0 ... 0 0

0 0 ... 0 0

x x z x x

zw0 0 ... 0 −R(z0) wN

S ,

X1=R
−R(z0) w0 w1 0 ... 0

w1 −R(z0) w1 0 ... 0

0 0 0 ... 0

x x x z x

0 0 0 ... 0

S ,

X2=R
0 0 0 0 ... 0

0 −R(z0) w1 w2 0 ... 0

0 w2 −R(z0) w2 0 ... 0

0 0 0 0 ... 0

x x x x z x

0 0 0 0 ... 0

S ,
x
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XN=R
0 ... 0 0 0

0 ... 0 0 0

x z x x x

0 ... 0 0 0

0 ... 0 −R(z0) wN−1 wN

0 ... 0 wN −(Rz0) wN

S .
And so, if Rz0 < 0 at least one of the matrices Xm, m=1, ..., N, or X
cannot be positive semidefinite (respectively negative semidefinite if
Rz0 > 0), from which (1.7) can be deduced. L

We now prove that (1.7) is sharp. To do that we consider a positive
measure n whose support is the interval [−1, 1] and write (rn)n for its
sequence of orthonormal polynomials. Hence the set of zeros of (rn)n is
dense in [−1, 1]. We define the sequence of polynomials (pn)n as follows:

p2n(t)=rn(t2), p2n+1(t)=trn(t2).

It is clear that (pn)n are orthonormal with respect to the inner product (1.6)
when N=1, m=n, D=[−1, 1] and w0=w1=1. If z0 is a zero of some pn,
Theorem 1.2 gives that

|z0 | [ 1.(4.1)

Since the set of zeros of (rn)n is dense in [−1, 1] we can take a sequence of
zeros (xk)k converging to 1 (or −1). Each square root of xk is then a zero
of pn for certain n, and then (4.1) is sharp.

Finally, we study the general case of size 2×2.

Theorem 4.1. Consider an inner product of the form

Op, qP=F [T0(p(z)) T0(q(z)) w0(z)+T1(p(z)) T1(q(z)) w1(z)(4.2)

+(T0(p(z)) T1(q(z))+T1(p(z)) T0(q(z))) v(z)] dm(z),

where the operators T0 and T1 are given by (1.5) for N=1, m is a finite posi-
tive Borel measure with compact support D … C, (D containing infinitely
many points) and w0, w1, v ¥ L1(m), w0, w1 \ 0 and w0w1−v2 \ 0. We assume
that,

|v|/w0,
|zw0(z)+w1(z)|2−4R(z) v2(z)

w0(z) w1(z)−v2(z)
,

|zw0(z)−w1(z)|2

w0(z) w1(z)−v2(z)
¥ L.(m).
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If z0 is a zero of an orthogonal polynomial with respect to O ,P, then

|z0 | [`C21+C22,(4.3)

where

C1=max 3 || |v|/w0 ||., (1/2) >
|zw0(z)+w1(z)|2−4R(z) v2(z)

w0(z) w1(z)−v2(z)
>1/2
.

4

and

C2=(1/2) > |zw0(z)−w1(z)|2

w0(z) w1(z)−v2(z)
>1/2
.

.

Proof. We assume Rz0 > 0. Taking a=−1 in (2.2) (a=1 if Rz0 [ 0),
and applying our method we deduce that for some z ¥ D the hermitian
matrix

R 2Rz0w0−2v 2Rz0v−(z̄w0+w1)
2Rz0v−(zw0+w1) 2Rz0w1−2Rzv

S

can not be positive definite.
An easy computation gives that Rz0 [ |v|/w0, or

Rz0 [
1
2 |[|zw0(z)+w1(z)|2−4R(z) v2(z)]/[w0(z) w1(z)−v2(z)]|1/2,

for some z ¥ D.
Taking now a=i in (2.2) we deduce that for some z ¥ D the hermitian

matrix

R 2Iz0w0 2Iz0v−iz̄w0+iw1
2Iz0v+izw0−iw1 2Iz0w1−2Izv

S

can not be positive definite, from where we find that

Iz0 [
1
2 |[|zw0(z)−w1(z)|2]/[w0(z) w1(z)−v2(z)]|1/2,

for some z ¥ D. L
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